
The International Journal of Science, Mathematics and Technology Learning  
ISSN: 2327-7971 (Print), ISSN: 2327-915X (Online) 
Volume 30, Issue 2, 2023 
https://www.ijsmtl-cgrn.com 

 

185 

Various properties related with the class of second order 
linear homogeneous recurrence relations with constant 
coefficients 

 
Dr. Vandana R. Patel, Department of Mathematics, Sir P.T.Science College, Modasa, India 

Dr. Devbhadra V. Shah, Department of Mathematics, Veer Narmad South Gujarat University, 

Surat, India  

Parimal A. Patel, Department of Mathematics, C. B. Patel Computer College & J. N. M. Patel 

Science College, Bharthana, Vesu, Surat, Gujarat, India 

Dr. Daksha M. Diwan, Department of Mathematics, Government Engineering College, 

Gandhinagar, India 

 

Received: 07/22/2023; Accepted: 10/29/2023; Published: 11/27/2023 

 

Abstract: In the present work we consider the class of second order linear homogeneous recurrence 
relation depending on two parameters which has the form                     with initial condition 
         and a, b are positive integers. If      , *  + is sequence of Fibonacci numbers. In the 

case        ,*  + is a sequence of Pell numbers. In this paper we obtain Binet type formula for 
*  +and express   in simple explicit form. We use it to derive the recursive formulafor    and also 
compute its successor and predecessor. We also find the bounds and various results for the powers of 
corresponding ‘golden proportion’ for this sequence.  
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Introduction 
 

Fibonacci numbers are perhaps most famous for appearing in the rabbit breeding problem, 

introduced by Leonardo de Pisa in 1202 in his book called Liber Abaci, they remain fascinating 

and mysterious to people today. However, they also occur in Pascal’s triangle*Koshy],in 

Pythagorean triples[Koshy],computer algorithms[Stojmenovic;Fredman,Tarjan],some areas of 

algebra[Feingold;Suck,Schreiber,P.Häussler;Schork],graphTheory[Chebotarev;Bogdonowicz,],quasi

- crystals[Atkins,Geist; Zubov,Teixeira Rabelo],and many areas of mathematics. They occur in a 

variety of other fields such as finance, art, architecture, music, etc. The Fibonacci sequence is a 

source of many identities as appears in the work of Vajda , Harris, and Carlitz. 

The Fibonacci sequence *  + is defined by              , for all    , with initial 

conditions      and       . also the sequence of Lucas numbers *  + is defined by 

             , for all    , with initial conditions      and       . 

The Binet’s formula for Fibonacci sequence and Lucas sequence is given by    
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Where   .
  √ 

 
/  Golden ratio          and    .

  √ 

 
/         

In this paper, we present different properties of the Generalized Fibonacci sequence 

*  + which is defined by                , for all     with      and      ; where a 

and b are nonzero real numbers. 

The few terms of the sequence *  + are : 0,1,a,a2+2ab,a4+3a2b+b2,a5+4a3b+3ab2,…and 

so on. The Generalized Lucas sequence *  + which is defined by                , for all 

    with      and      ; where a and b are nonzero real numbers. 

 

Generating Function For The Generalized Fibonacci Sequence 
 

Generating functions provide a powerful method for solving linear homogeneous recurrence 

relations. Even though generating functions are typically used in conjunction with linear 

recurrence relations with constant coefficients, we will systematically make use of them for 

linear recurrence relations with nonconstant coefficients. In this section, we consider the 

generating function for the generalized Fibonacci sequence and derive some of the most 

interesting identities satisfied by this sequence. 

Theorem 2.1.  The generating function for the generalized Fibonacci sequence given by 

*  + is  ( )  
 

        
 . 

Proof: Let  ( )            
       

    be the generating function of the 

generalized Fibonacci sequence *  +, we note that     ,      . 

 Now,   ( )            
       

    

              ( )           
      

        
      

              ( )      
      

      
        

      

We will add the power series   ( )       ( )       ( ) then we get,  

 ( )     ( )      ( )      (       )  (           ) 
            

Here notice that if we take our rearranged recursion formula                   
,with    , we get                 . Thus, the Co efficient of    term in our combined 
series is zero. In fact using the recursion formula, the co efficient of the terms after the     term 
we see they are all zero. 
Thus We have   ( )     ( )      ( )      (       )  , Since     ,       

 (        ) ( )        

   ( )   
 

        
 ∑       

    , which is required generating function. 

 

Binet’s Formula For The Generalized Fibonacci Sequence 
 

Koshy refers to the Fibonacci numbers as one of the “two shining stars in the vast array of 

integer sequences ”*Koshy]. We may guess that one reason for this reference is the sheer 

quantity of interesting properties this sequence possesses. Further still, almost all of these 

properties can be derived from Binet’s formula. A main objective of this paper is to 

demonstrate that many of the properties of the Fibonacci sequence can be stated and proven 
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for a much larger class of sequences, namely the generalized Fibonacci sequence. Therefore, 

we will state and prove Binet’s formula for the generalized Fibonacci sequence. 

 

Theorem 3.1: (Binet’s Formula)) The terms of the generalized Fibonacci sequence *  + are given 

by     
     

   
 ; where      

√     

 
    and       

√     

 
                                                                    

(3.1) 

Proof: We first express function  ( ) for    as a sum of partial fractions. 

Let (        )  (    )(    ) 

Now Consider  ( )   
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Similarly, If We take   
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  But ,  ( )  ∑     
  

     

     
     

   
     Which is Binet’s formula for given generalized Fibonacci sequence. 

Lemma: 3.2. | |    ; when     . 

Theorem 3.3.:    0  
  

 

 
1             where   

 

√      
 and    ,             

are      integers 

Proof: By theorem 3.1, we have, 

          |     
 |  |

  

√     
 

  

√     
 

  

√     
| 

                               | 
  

√     
| 

                               
| | 

√     
 

Using Lemma 3.2, we get   |     
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But  √        as a and b are positive integers 
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Thus for    ,    0  
  

 

 
1, as required. 

For example, let     ,    ,      and      then         and            

             so,            
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      0       
 

 
1 = ,      - = 409     

Also, by calculating,        

 Theorem 3.4. :      ,     - ; for     

Proof: by theorem 3.1 we have, 
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  and     
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Substracting these two results, we get 
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Using Lemma 3.2 , for     

We get,            

                                                                                                                                   (3.2) 

On the other hand again by lemma 3.2 ,              ,  for     

                                                                                                                             (3.3) 

Combining (3.2) and (3.3), we get                     

                    

For example, let     ,     then         ;    ,     -  ,        -  

,      -      

Also by calculating         

Corollary 3.5. :     
  
   . 

Theorem 3.6 :     0
 

 
(      )1 ; for     

Proof: since     , -   , theorem 3.4  gives the double inequality                    
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   and    is an integer, it follows that  
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(      )1 ; for     

 For example, the predecessor of the Generalized Fibonacci number         is given 

by 

  0    
 
1  0     

      
1  ,      -     ; which is sixth Generalized Fibonacci number. Where 

   ,     then                    

Before concluding this section, we prove the result which gives nice bounds for    ; for 

   .   

Theorem 3.7 :          
    ; for    . 

Proof: we prove the result by induction on n. 
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 For    , we have to prove       
  

We know that                    

So, we have to only show that           

Now, from theorem 3.4,    ,     -         ; where       

          as      

Thus, clearly      as                                                                                            

(3.4) 

Here first we claim that     

We have     
  √     
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Also,                        as     

                                                                                                                                  (3.5) 

Combining (3.4) and (3.5), we get                 
  

So, the result is true for      

Assume that result is true for all n, such that      , that is          
   and  

           
    holds. 

Multiplying first inequality by ‘a’ and second by ‘b’ then adding them, we get  

                        
           

     (    )        
   (    )  

              
      as         

            
   

  (   )         
(   )    

This proves the result by induction, for    . 
 

Value of    : 
 

It is well known that if   is real root of the equation          then    
 

 
(   √   ), 

where   and    respectively are the nth Fibonacci and Lucas numbers. Here we establish 

analogous identity for the Generalized Fibonacci numbers. 

Theorem 4.1 :    
 

 
(   √       ),    ;where recurrence relation for    is 

given as :                with initial conditions     ,      and    is a 

Generalized Fibonacci number. 

Proof: we prove the result by induction on n. 

For    , we have 
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Thus, the result is true for    . 

Suppose result is true for    ; so,    
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Now, 
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                                                         (
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                                                            (    )  

                                                                           as           

                                                              

Therefore, we get      
 

 
(     √         ) 

Thus, the result is true for       also. 

Hence, the result is true for all     this proves the required result. 

 

Theorem 4.2 :                and                ,                 . 

Proof :  we prove this result by induction on n,  

if      then                      as               

Therefore result is true for    . 

Suppose result is true for    . 

              holds. 

Now we have to show that result is true for      . 

              (         ) 

                            

               (    )                 (  
       

                  (         )                     

                            

Thus result is true for      . 

So, by mathematical induction we can say that, 

            ,   for all     

Similarly, we can prove              

 

Theorem 4.3 :    
 

 
(   (    )  ), for all    ; where               with initial 

conditions     ,     . 

Proof : we prove this result by induction on n. 

For    ,  
 

 
(   (    )  )  

 

 
(      )     
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Suppose given result is true for    ; so,    
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Thus, the result is true for       also. 

 
 

The number of digits in a Generalized Fibonacci number : 
 

Binet type formula (3.1) can be successfully used to determine the number of digits in   (we 

denote it by #  ). We prove the following result: 

Theorem 5.1 : #   ,                  |   | -      where ‘log’ represents the 

logarithm with base 10. 

Proof : we write (3.1) as    
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Since  | |  | |, we have |
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   as     

Therefore, when n is sufficiently large,    
  

|   |
 

                              |   |   

 The number of digits in      characteristic of             

  #   ,          -    

Thus, #   ,                  |   | -    

Remark : if         then and |   |    

  we have number of digits in    ,                    -    ,      -        

  

Notice that         does indeed contain 4 digits. 

 

Convergence of Generalized Fibonacci decimal expansion: 
 

In 1953, stancliff  observed that∑
  

     
 
    

 

  
; where    is the ith Fibonacci number. 

Koshy(p.p.425) proved that ∑
  

    
 
    

 

      
  ;where m is any positive integer. Notice that 

the denominator is the characteristic polynomial for Fibonacci sequence. In this last article, we 

prove an analogous result for Generalized Fibonacci sequence. 

Theorem 6.1: For any positive integer m, ∑
  

 (   ) 
 
    

 

         
   

Proof: by Theorem 2.1, the generating function for Generalized Fibonacci sequence *  +n≥0 is 

 ( )  
 

        
 ∑       

                                                                                                         (6.1) 

Since, |        |     | |   | |    

i.e.  | |   | |       

so, | |  
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also,      ;           ;                   √           
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Thus, |        |    if | |   , the power series expansion of  ( ) is absolutely 

convergent for all x with | |   . Let       with    , thus (6.1) gives : 
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∑    
    

    
   

            
  ∑       

    
  

         
 

Divides both sides by   , we get  

∑    
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 , as required result. 

Corollary 6.2 : ∑
  

  (   )
 
    

 

         
 

Proof: If we take     ,     in theorem(6.1) then we can easily get required result. 
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